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ABSTRACT
Estimating physical activity (PA) intensity and energy expen-
diture (EE) is a problem that typically requires the use of
wearable sensors such as a heart rate monitor, or accelerome-
ter. We investigate the accuracy of a computer vision system
using videos recorded from a pair of wearable video glasses
to estimate PA strength and EE automatically using age, gen-
der, speed, and activity cues. Age and gender are obtained us-
ing the Deep EXpectation network, while activity is estimated
from joint angles and movement speed. We also present re-
sults on a study of 50 participants performing four different
activities while measuring corresponding features of interest
such as height, weight, age, sex, and ground truth EE and PA
strength data collected via accelerometer. We present both the
results of each computer vision subsystem and overall accu-
racy of the PA strength estimation (89.5%) and the average
EE difference (1.96 kCal/min).

Index Terms— Convolutional neural networks, energy
expenditure, physical activity intensity, action recognition

1. INTRODUCTION
Automatically determining the physical activity (PA) strength
and energy expenditure (EE) of people in a scene would dra-
matically improve PA measurement for public health moni-
toring as well as applications in park management and de-
sign [1], smart gyms [2], or even home gaming Virtual Real-
ity (VR) consoles such as the Playstation VR, which mainly
relies on camera sensors.

PA intensity is often derived from known metabolic equiv-
alent (MET) values (ratio of EE to mass) that are associated
with a particular workload. The energy requirements at rest
are equivalent to 1 MET, while MET ranges between 1.5-2.9,
3.0-5.9, and >= 6.0 METs reflect light, moderate, and vigor-
ous intensity, respectively. Accelerometer-derived estimates
of PA intensity and EE are based in part, on an estimated MET
value. [3].

Another common metric in PA measurement is EE, mea-
sured in kCals/min (i.e. calories/min). Similar to METs,
EE increases proportionately with increasing intensity. EE
can be directly obtained via indirect calorimetry, although ac-
celerometers are more commonly used to estimate EE in free-
living conditions. As such, current objective measures of PA
rely heavily on wearable sensors which may not be feasible

Fig. 1. Example output from our system. All of the annota-
tions are predictions that have been calculated automatically
(offline).

when monitoring population-level PA and other health behav-
iors.

In this paper, we utilize computer vision and machine
learning techniques in order to estimate the PA strength cat-
egory (light, moderate, vigorous) and the average number of
calories burned (kCal/min). Computer vision and machine
learning have recently progressed to the point where Convo-
lutional Neural Networks (CNNs) have performed extremely
well on a variety of tasks. We approach the problem by es-
timating various features of interest from video sequences
using CNNs, and using those features to estimate the PA
strength via a random forest. The features of interest we ex-
tract from the video sequence are age, sex, activity type, and
speed. Age and gender are determined via the Deep EXpec-
tation (DEX) network, while PA type is calculated from joint
angles and speed.

The contribution of this work is as follows:
• Investigation of computer vision accuracy for obtaining

features of interest on a novel dataset of 50 participants
performing four different activities.

• Development and analysis of activity recognition using
joint angles and speed features
• Quantitative analysis of PA strength and EE using a ran-

dom forest to fuse the features extracted by computer
vision



The rest of this paper is organized as follows. Section
2 gives an overview of ways to calculate PA strength and
EE, and related recent computer vision algorithms. Section
3 details the data collection and the estimation of features via
computer vision. Section 4 describes the results of each com-
puter vision subsystem and the overall accuracy for estimat-
ing PA strength and EE. Finally, the paper is summarized and
concluded in Section 5.

2. BACKGROUND
Estimating EE has been researched for decades. In a com-
parison from 1989 [4], EE was estimated from an accelerom-
eter, heart rate, and (manual) video analysis for activity rat-
ing, and found that the accelerometer data was the most accu-
rate in terms of kCal/min difference. A newer study [5] from
2012 fuses features from various personal body sensors (ac-
celerometer, heart rate monitor, respiration monitor, and skin
temperature) via a hidden markov model. Recurrent neural
networks for fusing sensor data has also been tried [6]. Ac-
celerometers were found to be usable for distinguishing cer-
tain activities (e.g. walking vs running), but lacks the ability
to distinguish other activities, such as swimming or cycling
[7]. Computer vision lacks this limitation.

Automatically extracting the EE from video requires three
steps: detection, tracking, and energy estimation. Each of
these are separate computer vision tasks with a dense his-
tory of work, of which we will mention a few state-of-the-
art methods. The state-of-the-art for detection and tracking
leverage CNNs, such as FasterRCNN [8] or YOLOv3 [9] for
detection, and Simple Online and Realtime Tracking (SORT)
[10] for tracking. For activity recognition, Long-Short-Term-
Memory networks have been used [11]. Skeletal pose infor-
mation was used [12] to match similar skeletons to each other
for action recognition.

Studies that combine computer vision with EE studies are
described below. The CAM system [13] uses an overhead
camera with semi-automatic algorithms with user input and
Kalman filters for tracking [14], and movement speed is used
to calculate the PA intensity. The most recent and similar
study to ours uses CNNs to extract features for each activity
type, and then use a LSTM for estimating METs [15]. In our
study, we automatically detect, track, and extract individual
features such as age, gender, activity type, and speed, and use
those features to estimate the final EE from a ground-based
viewpoint.

3. METHODS
In this section, we describe the data collection, the detection,
tracking, and feature extraction computer vision subsystems,
and the random forest classifier and regressor for PA strength
and EE estimation.

3.1. Data
50 adults participated in this study. After assessing age, gen-
der, height and weight, subjects were fitted with an ActiGraph
GT3X accelerometer prior to performing four different timed

activities on an outdoor field: stand (1 min), walk (3 min),
jog (3 min), and a single 50 meter sprint. A pair of GoGloo
video glasses was used to record each activity at 1920x1080
resolution and 30 frames per second from the side of the track
with markers placed every 5 meters.

Ground truth EE (average kCals/min) and strength clas-
sifications were estimated from the ActiGraph GT3X ac-
celerometer data (sampling rate = 100Hz) using the Freedson
Vector Magnitude 3 [16] algorithm. In our data, the EE
ranges from 3.1 kCal/min to 18.27kCal/min.

3.2. Computer Vision Subsystems

3.2.1. Detection and Tracking

Detection was performed using the FasterRCNN [17] detector
with a VGG16-base classifier [18] that is pre-trained with the
Caltech pedestrian benchmark [19] and trained on 501 manu-
ally annotated samples from an in-house dataset collected by
us around various parks in Delaware. Tracking is somewhat
implicit, with most of our data including only the subject of
interest in the frame. However, in some rare instances there
are people who walk by, that would disrupt the implicit track-
ing assumption. To ensure robustness, we apply the Deep-
SORT [20, 21] algorithm to track individuals across frames.

3.2.2. Age and Gender Estimation

To perform age and gender estimation, first the face of the
subject needs to be extracted. We use the Voila-Jones face
detector [22] to detect faces in the ”standing” action videos.
The Deep EXpectation (DEX) [23] network, which is trained
on the IMDB-WIKI dataset [23], is used to estimate age and
gender.

3.2.3. Activity Recognition

We chose to implement activity recognition by using joint an-
gles (specifically elbow and knee angles) and speed as fea-
tures. The general idea is to create a reference (average)
distribution of joint angles and speed for each activity class
(sprinting, jogging, walking, standing), and then use a near-
est neighbor approach to map features from new data to the
closest model activity class.

To calculate the joint angles, the 2D skeletal pose of the
subject is estimated in every frame using the Realtime Multi-
Person Pose Estimation [24, 25] algorithm. From the ordering
of joints from Realtime Multi-Person Pose Estimation [24,
25], joints 12-14 were used to calculate the knee angle, and
joints 6-8 were used to calculate the elbow angle. The angle
is calculated by

a =

[
pt1x − pt2x
pt1y − pt2y

]
b =

[
pt3x − pt2x
pt3y − pt2y

]
θ = cos−1 a · b

|a| · |b|
.

(1)
The collection of all joint angles from each frame of an ac-

tivity video form a distribution. To compute distribution sim-



ilarity between the reference distribution and a new video’s
distribution, we use the Kolmogorov–Smirnov distance [26].

To calculate the speed, we use the distance each subject
traveled (20m) in the activity videos and divided by the num-
ber of seconds the video contained. This distance is stan-
dardized across all videos and subjects and can be assumed.
For the ”standing” activity, the subject never moves and the
distance traveled is zero. This distance over time gives an
average speed for the subject for a given activity video. The
average speed is compared against the reference distribution
of speeds using a Mahalanobis distance [27].

Finally, to predict the activity, a linear combination of the
joint angle and speed distance scores is used

Dtotal = α1 ∗Dknee + α2 ∗Delbow + α3 ∗Dspeed. (2)

The α’s were determined empirically, by trying all combina-
tions of α’s at a step size of 0.05 and reporting the best results.
The best α’s are 0, 0.75, 0.25, respectively. This is surprising
because the system found that both the elbow and knee angles
are not needed, setting alpha1 = 0. Thus, only the elbow an-
gles and speed were used in the final version of the model.

The final activity is the one in which Dtotal is minimized.

3.3. Predicting PA Intensity and Energy Expenditure

A random forest regressor was trained to estimate the EE,
and a random forest classifier was used to estimate the PA
strength (light, moderate, vigorous) based on the above fea-
tures extracted via computer vision. 20% of the data was used
for testing, with 80% for training. The implementation of the
models has the following parameters:

Classification model: NumTrees: 300, MinLeafSize : 1
Regression model: NumTress: 800, MinLeafSize: 5

4. ANALYSIS AND RESULTS

In this section, we measure the accuracy of each computer
vision subsystem, measure the accuracy of the random forest
regressor and classifier with ground truth features, and then,
finally, measure the accuracy of the overall system. For each
test, 80% was used for training, with 20% for testing, with the
average 5-fold cross validation accuracy reported. Accuracy
is reported as the number correct divided by the total.

The quantitative results for age, gender, and action recog-
nition are given below. For detection, tracking, and face de-
tection, we do not have the ground truth annotations for all
frames in our dataset (there would be tens of thousands of
frames to annotate). However, we did verify manually that
these systems were correctly working and will submit supple-
mentary videos showing this is the case.

Gender Acc Age ≤ 5 Err Age Mean Err Age Std Err
77% 81% 3.2 3.9

Table 1. Age and gender prediction accuracy using Deep EX-
pectation (DEX).

4.1. Computer Vision Subsystems

4.1.1. Age and Gender Estimation

81% of the age estimates are within 5 years of the true age,
with 57% of the estimates within 3 years of the true age. The
maximum difference was 12 years, but that subject was wear-
ing sunglasses. For gender estimation, the overall average
accuracy was 77%. A few of the incorrectly labeled genders
were scrunching up their face due to the wind. These numbers
are summarized in Table 4.1.1

4.1.2. Action Recognition

We present the results of action recognition for using speed
only, joint only, and then the final model described in Sec-
tion 3. Confusion matrices are shown in Figure 2, with the
overall accuracies 91.7%, 84.9%, and 96,8% respectively. For
the joints-only model, the mistakes are made between jogging
and sprinting. For the speed-only model, walking/jogging and
jogging/sprinting are confused. The final model only makes
one of each type of mistake. These results show that joint
angles and speed are both useful features.

Fig. 2. Confusion matrices for action recognition using joint
angles only, speed only, and the final combined model.



4.2. PA Strength and EE without Computer Vision using
Ground Truth Features

This section tests the accuracy of the random forest classi-
fier and regressor from ground truth age, gender, activity, and
speed.

For strength classification, there are three categories:
light, moderate, and vigorous. The dataset is made up of
27.94% light, 22.55% moderate, and 49.51% vigorous sam-
ples, which is mainly due to jogging and sprinting both mostly
being vigorous intensity exercises. The overall average accu-
racy was 98.5%.

For EE regression, the mean, standard deviation, maxi-
mum, and median kCal/min difference are 1.23, 1.02, 4.55,
and 1.03 respectively. These results are summarized in Fig-
ure 3.

Finally, we used the neighborhood component analysis
algorithm [28] to analyze how important each feature is, with
feature weights shown below in Figure 4. For regression
of EE, the activity type and the age of the subject were the
most important features. For classification of PA strength, the
speed and activity were the most important features.

Fig. 3. PA strength classification and EE estimation from
ground truth features using a random forest.

Fig. 4. Feature weights as calculated by the neighborhood
component analysis for regression of EE and classification of
PA strength

Fig. 5. PA strength classification and EE estimation from
computer vision estimated features using a random forest.

4.3. PA Strength and EE using Computer Vision Features
This section tests the accuracy of the random forest on com-
puter vision estimated age, gender, activity, and speed.

The same strength categories (light, moderate, vigorous)
are used. The overall accuracy was 89.5%. The most errors
came from mistakenly classifying a light strength workout as
moderate. This makes sense as jogging and sprinting are vig-
orous exercises, while walking quickly can be on the bound-
ary between light and moderate.

For EE regression, the mean, standard deviation, maxi-
mum, and median kCal/min differences are 1.96, 1.50, 5.83,
1.53 kCal/min, respectively. This means our system, on aver-
age on our dataset, can estimate the average number of calo-
ries burned by a subject within two calories.

5. CONCLUSION
On our dataset of 50 subjects performing four different activ-
ities, we are able to use computer vision to fully automate es-
timating the PA strength with 89.5% accuracy and EE within
an average of 2 kCal/min. We use computer vision to esti-
mate age, gender, activity type, and speed using Deep Expec-
tation and Realtime Multi-Person Pose Estimation, and show
through Neighborhood Component Analysis that these fea-
tures provide value to the estimation of PA strength and EE.
We present the accuracy of these individual components as
well as the overall accuracy. The main limitation of this work
is the lack of common dataset to compare against other meth-
ods. In the future, we plan to collect and annotate a much
larger dataset to create a common ground for comparison and
analysis. We also intend to add additional features to the com-
puter vision system, such as weight and height.
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