NEMOURS CHILDREN'S HEALTH

INTRODUCTION

- Sickle cell disease (SCD) causes vascular occlusion leading to tissue damage and volume loss.
- B-scan (cross section) retinal optical coherence tomography (OCT) images of SCD patients show retinal damage as inner retinal thinning [1].
- A normal landmark, fovea, is a pitted invagination located at the center of the posterior retina, where the inner retina is the thinnest.
- Early and subclinical sickle cell retinopathy (SCR) is frequently detected by retinal OCT. Characteristic injuries are most frequently present in areas just temporal to the fovea (Fig.
- This project utilizes a deep learning method to detect changes in retinal thickness due to SCR and differentiate it from fovea using retinal OCT from children with SCD.

Fig. 1: SCR and fovea in an OCT B-scan

HIGHLIGHTS

- SCD causes inner retinal thinning.
- SCR can be diagnosed by examining retinal OCT images.
- We collected and annotated OCT images of children with SCD.
- We used the You Only Look Once (YOLO) [2] network to automatically detect SCR and separate it from fovea.
- Our model achieves a detection mAP of 87% in SCR and 96% in fovea.

A Deep Learning System For Sickle Cell Retinopathy Detection Using Retinal **OCT Images From Children With Sickle Cell Disease**

Jing Jin¹, Ashuta Bhattarai², Robin E. Miller¹, Edward A. Kolb¹, Chandra Kambhamettu² ¹Nemours Children's Hospital, Delaware

² Video/Image Modeling and Synthesis (VIMS) Lab, Dept. of Computer and Information Sciences, University of Delaware

METHODS

- Children with SCD underwent ophthalmologic examination at Nemours Children's Hospital, Delaware between September 2015 and January 2022.
- 38 patients (18 male, 23 SS, 9 SC, 3 Sβ+, 3 Sβ0)
- Age 13.50 ± 4.64, range 5.25 to 20.26 years
- Retinal OCT were obtained using SPECTRALIS (Heidelberg Engineering).
- 4719 B-scans from 153 OCT studies
- SCR b-box: 1430 instances in 905 B-scans
- Fovea b-box: 639 instances in 639 B-scans
- We used a **deep learning-based object detection** approach to identify SCR and fovea instances.

$$mAP = \frac{1}{N} \sum_{k=0}^{N} AP_k$$

Where, AP_k is average precision of class k and N is the number of classes

- **Fovea** and **SCR** were annotated with bounding-box.
- Dataset was divided into 5 equal sets for **5-fold cross validation**.
- YOLO v4 [2], a grid-based object detection algorithm, was applied.
- Five models, each using about 3780 training and 939 validation images for over 1000 epochs, were trained.
- Tesla V100 GPU was used to train.
- Training loss was calculated with **binary cross entropy** and focal loss.
- Model performance was tested with mean average precision (mAP).
- mAP was calculated using intersection over union between annotated and predicted bounding boxes.

RESULTS

Fig 2: Results of test dataset with confidence score

Cross Validation (Fovea, SCR)				
Folds	mAP@.5	Sensitivity	Specificity	
1	(0.97, 0.85)	(0.98, 0.84)	(0.99, 0.93)	
2	(0.94, 0.90)	(0.96, 0.89)	(0.98, 0.96)	
3	(0.93, 0.89)	(0.95, 0.90)	(0.99, 0.96)	
4	(0.96, 0.86)	(0.98, 0.85)	(0.98, 0.94)	
5	(0.98, 0.85)	(0.98, 0.87)	(0.99, 0.96)	
mean	(0.96, 0.87)	(0.97, 0.87)	(0.99, 0.95)	
1 2 3 4 5 mean	(0.97, 0.85) (0.94, 0.90) (0.93, 0.89) (0.96, 0.86) (0.98, 0.85) (0.96, 0.87)	(0.96, 0.89) (0.96, 0.89) (0.95, 0.90) (0.98, 0.85) (0.98, 0.87) (0.97, 0.87)	(0.99, 0.95) (0.98, 0.96) (0.99, 0.96) (0.99, 0.96) (0.99, 0.95)	

D

- Future research:
- progression

REFERENCES

This work is supported by an Institutional Development Award (IDeA) under grant number U54-GM109021 and P20 GM103446 from the National Institute of General Medical Sciences of the National Institutes of Health.

CONFUSION MATRIX

Fovea	0.98	0.02	0.01		
SCR	0.01	0.91	0.12		
Background	0.01	0.07			
	Fovea	SCR	Background		
Predicted					

CONCLUSIONS

High precision SCR detection was achieved using YOLO deep learning object detection network

Accurate distinction occurred between SCR and fovea

• Volumetric OCT analysis for better detection

Analyze OCT scans of re-visiting patients to predict SCR

• Further details available at: <u>www.bigdatavision.org/octimg/</u>

1. Jin J, Miller R, Salvin J, et al. Funduscopic examination and SD-OCT in detecting sickle cell retinopathy among pediatric patients. J AAPOS 2018;22:197-201.e1.

2. Bochkovskiy A, Wang C, Liao HM. Yolov4: Optimal speed and accuracy of object detection. CoRR, 2020; abs/2004.10934, 2020.