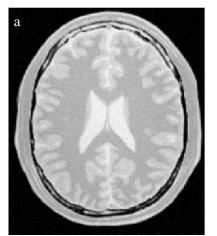
CU-Net: Towards continuous multi-class contour detection for retinal layer segmentation in OCT images

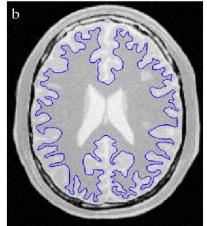
Ashuta Bhattarai

Department of Computer and Information Sciences

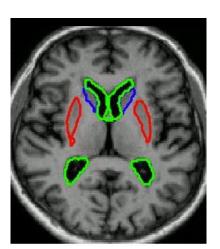
Concepts

- 1. Contour detection
- 2 Optical Coherence Tomography (OCT)
- 3. Retinal layer segmentation (RLS)




Contour detection

Medical image segmentation



(i) Contour detection on lung CT scans

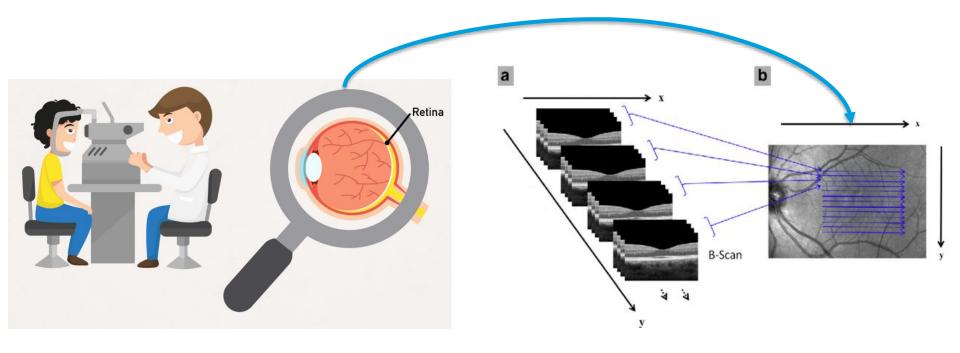
(ii) Contour detection on brain MRI

Contour detection

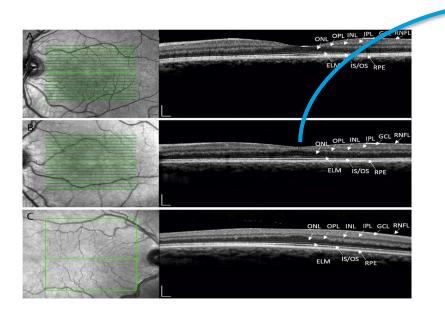
Object detection and scene understanding

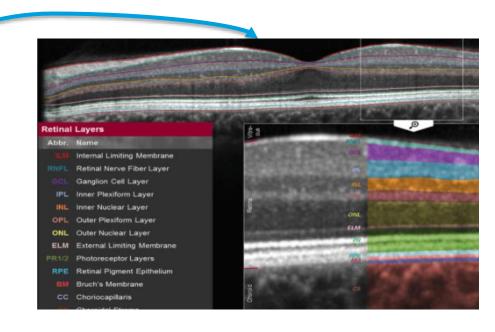
OCT images

- Retinal imaging procedure
- Exposes retinal cross-sections
- Retinal disease diagnosis
 - Diabetic Macular Edema (DME)
 - Sickle-cell Retinopathy (SCR)
 - Multiple Sclerosis (MS)



SPECTRALIS OCT - Heidelberg Engineering




OCT images

Retinal layer segmentation (RLS) from OCT images

Properties of a reliable RLS system

- Accurately approximate retinal contours
- Detect contours in the correct hierarchical order
- Produce thin, crisp, and unambiguous contours
- Produce continuous contours along the vertical axis

Existing work

- Contour detection
- Retinal layer segmentation

Existing literature (contour detection)

Li et al.

- Edge track
- Active contour tracking system
- Human tongue ultrasound

Kang et al.

 Fast contour extraction model based on Multiple Cue Inhibition operator name SpeedMCI.

Ronneberger et al.

- UNET
- Encoder-decoder architecture
- Medical image segmentation

Wang et al.

- SDUNet
- Variation of UNET
- Dilated convolution

Yang et al.

- Fully convolutional encoder-decoder network
- Multi-scale edge supervision

Deng et al.

- CNN to produce sharp boundaries
- Weighted cross entropy and dice coefficient loss (Novel at the time)

Existing literature (Retinal layer segmentation)

S. Xiao et al. (2010)

- Graph theory
- Weighted graphs from gradients

Tian et al. (2015)

- Shortest-path based graph search
- Inter-frame similarities to refine search regions

Chiu et al. (2015)

- 7-layer segmentation of DME
- Duke dataset
- Graph theory, kernel regression

Giovinco et al. (2015)

- Gradient approx.
- Total variation denoising, shock filter, gradients, region fusion

Sun et al. (2017)

 Gradient approx. directly to OCT volumes

Devalla et al. (2018)

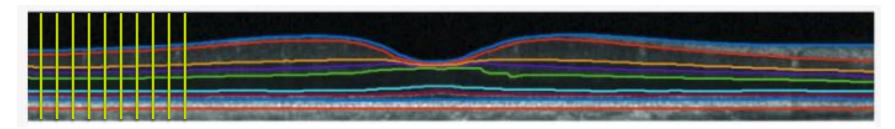
- DRUNET
- Custom U-net
- Segment 6 tissue layers

He et al. (2019)

- Op 1: pixelwise label
- Op 2: surface maps
- Duke and JHU

Li et al. (2020)

- DeepRetina
- X-65, enc-dec
- Layer thickness


Hsia et al. (2021)

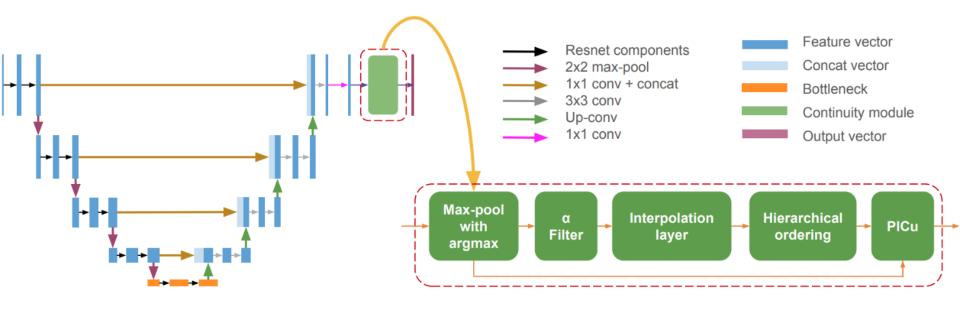
- Mask RCNN
- Choroidal thickness

Current state of the art: Works by He et al.

- Topology guarantee module
 - $s_j(i)^{new} = s_{j-1}(i) + \text{ReLU}(s_j(i) s_{j-1}(i))$
- Surface position distribution
 - Column-wise soft argmax

Our idea

- Interpret retinal contours as natural cubic spline
 - Consider continuity as an inherent property of retinal layers
 - Interpolate discrete outputs from CNN network



Contributions

- Continuous U-Net (CU-Net): Residual U-Net with a novel continuity module
 - Polynomial continuity unit (PICu)
- Verification on 3 OCT datasets
 - State-of-the-art results on benchmark datasets
 - Consistent over changes in retinal structures caused by multiple pathologies

CUNet

Thank you!

