Resources
- CU-Net: Towards Continuous Multi-Class Contour Detection for Retinal Layer Segmentation In Oct Images
- ICIP poster (2022)
- ICIP slides (2022)
- Benchmark Dataset: S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, S. Farsiu, "Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema", ( BIOMEDICAL OPTICS EXPRESS), 6(4), pp. 1172-1194, April, 2015.
- Benchmark Dataset: Benchmark Dataset: Y. He, A. Carass, S.D. Solomon, S. Saidha, P.A. Calabresi, and J.L. Prince, "Retinal layer parcellation of optical coherence tomography images: Data resource for Multiple Sclerosis and Healthy Controls", Data in Brief, 22:601-604, 2019.
- SCR Detection
- DEnT Slides
- Github code (DEnT and existing methods)
- Nemours dataset (original images and annotations)
- Nemours dataset (Pre-processed pickles)
- A deep learning system for sickle cell retinopathy detection using retinal OCT images from children with sickle cell disease
- Arvo poster (2022)
- Deep learning-based contour detection for retinal layer segmentation and sickle cell retinopathy detection in OCT images
- Preliminary study report (2021)