OCT Image Analysis
  • Home
  • Research
  • Publications
  • Team
  • Resources

Resources



  1. CU-Net: Towards Continuous Multi-Class Contour Detection for Retinal Layer Segmentation In Oct Images
    1. ICIP poster (2022)
    2. ICIP slides (2022)
    3. Benchmark Dataset: S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, S. Farsiu, "Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema", ( BIOMEDICAL OPTICS EXPRESS), 6(4), pp. 1172-1194, April, 2015.
    4. Benchmark Dataset: Benchmark Dataset: Y. He, A. Carass, S.D. Solomon, S. Saidha, P.A. Calabresi, and J.L. Prince, "Retinal layer parcellation of optical coherence tomography images: Data resource for Multiple Sclerosis and Healthy Controls", Data in Brief, 22:601-604, 2019.

  2. SCR Detection
    1. DEnT Slides
    2. Github code (DEnT and existing methods)
    3. Nemours dataset (original images and annotations)
    4. Nemours dataset (Pre-processed pickles)

  3. A deep learning system for sickle cell retinopathy detection using retinal OCT images from children with sickle cell disease
    1. Arvo poster (2022)

  4. Deep learning-based contour detection for retinal layer segmentation and sickle cell retinopathy detection in OCT images
    1. Preliminary study report (2021)

© VIMS Lab

We are part of the Video/Image Modelling and Synthesis (VIMS) Lab and the Department of Computer and Information Sciences at the University of Delaware.

Template from Allen Lab

Contact:

vims@cis.udel.edu
212 Smith Hall
18 Amstel Ave
Newark, DE 19716